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The paper deals with the thermal degradation of starch during phosphorylation carried out at elevated
temperatures in the solid phase to produce biodegradable flocculants. The aim of the work reported here was
to elucidate the mechanism and kinetics of the degradation process. In the first part of this study, a discrete
Markov-chain model was proposed and discussed. The whole molecular weight range of the raw material
and degradation products was divided into 10 discrete intervals. Mass transitions between them were considered
as the consequence of splits of molecules to fragments, occurring with given probabilities at different positions
within the molecules during a time step. Supposing various distributions of split probabilities along the length
of starch molecules, and considering different influences of molecular weights on these probabilities, simulations
were carried out resulting in characteristic patterns in the evolution of molecular weigh distributions during
the process. These characteristics made it possible to identify the mechanism of degradation.

Introduction

Starch is a natural polymer available in plants, which can be
used as raw material to produce various biodegradable products.
Recently, chemical modification of starch was proposed by
Dencs et al. to prepare environmentally friendly flocculants
applicable in water purification processes.1,2 Chemical modifica-
tion was carried out at elevated temperature in the solid state
with sodium diammonium phosphate and a nitrogen-containing
catalyst resulting in simultaneous phosphorylation and breakage
of starch molecules. A certain degree of degradation is necessary
to convert the product water-soluble, but excessive degradation
may influence the product quality disadvantageously causing
reduction in flocculation efficiency. To prepare high-perfor-
mance flocculants, the highest possible molecular weight should
be protected that is still soluble in water. For this purpose, the
conditions of treatment, especially temperature, pH, and pro-
cessing time, are to be optimized. Together with experimental
investigation, the modeling of process helps to achieve this
objective.

During the last decades, several papers have been published
on heat degradation of various polymers, but only a few of them
dealt with starch. A considerable part of these studies presumed
a great number of chemical reactions leading to complicated
models not too easy to solve. Mehl et al.3 applied a kinetic model
to study the thermal degradation of halogenated polymers where
the proposed mechanism took 38 species into account in∼190
reactions. Marongiu et al.4 investigated the same problem,
supposing 40 species in∼250 reactions. Staggs5 developed a
mathematical model for random scission of linear polymer
chains composed of a high number of differential equations to
describe the evolution of molecular weight distributions as a
function of the fraction of bonds broken. In another work,6

Monte Carlo simulation was used to analyze the changes of
the population of molecules undergoing end-chain scission and
simultaneous recombination. For this, a molecule was selected
from a distribution of molecules at random and allowed to split

to a monomer and a new molecule with one fewer repeat units.
Kostoglou7 also emphasized the importance of the end-chain
scission mechanism. Madras8 investigated the rate of degradation
of PMMA dissolved in toluene at different temperatures. In his
work, a discrete model of polymer degradation was derived and
compared to the approach of continuous kinetics. In another
study,9 a random chain scission mechanism was supposed, where
the rate of polymer decomposition depended on the chain length.

Platkowski and Reichert10 used the Monte Carlo method for
modeling of polymerization and thermal degradation. Ziff and
McGrady11 studied the effect of the size distribution of polymers
and found that the rate of bond scission depended on the chain
length and on the position of the bond within the chain. A model
was proposed where the bonds break preferentially in the center
with a parabolic probability distribution along the chain. A
Monte Carlo study on the degradation of highly branched
polymer molecules was published by Galina and Lechowicz.12

The aim was to verify whether a bond scission led to a split of
a molecule in two smaller ones or just to reduction of the number
of monomer units in the molecule. Emsley and Heywood13 used
a pseudorandom number generator to choose splitting bonds
randomly. In one of their case studies, the degradation of
cellulose was investigated in water at ambient temperatures. It
was pointed out that totally random distribution did not explain
the experimental observations, but supposing a mechanism with
systematic scission of the polymer chains resulted in much better
agreement. Nassar et al.14 used the Markov-chain approach for
the analysis of a stepwise enzymatic cellulose degradation. Their
model predicted the length distribution of cellulose molecules
obtained by hydrolysis after different times.

It seems from the literature that the majority of papers
proposed deterministic models to study polymer degradation,
and only a few of them used a stochastic approach, mostly
Monte Carlo simulation. However, in other fields of chemical
engineering, stochastic models were more common, applying,
for example, Markov-chain models for bulk solids mixing.15-18

The process of particle attrition was modeled by Duggirala and
Fan19 proposing a cell model with probability balance equation.
Berthiaux20 developed a Markov-chain model to investigate the
particle size distribution in grinding. As regards modeling
principles, particle breakage is similar to molecule degradation.
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Therefore, these latter works gave inspiration to develop a
Markov-chain model to investigate the process of starch
degradation.

The starting point of our study was that, similar to the
breakage of particles, the thermal degradation of starch mol-
ecules cannot be considered as a deterministic process. On the
other hand, starch is a natural polymer with varying and not
exactly known chemical composition. Therefore, stochastic
modeling, first the Markov-chain approach, has great potential
in this field. The main advantages of this latter are as follows:
(1) less preliminary knowledge is needed on the exact composi-
tion of starch and on its degradation products, and (2) the model
and its solution are essentially simpler compared to the usual
deterministic approach.

Modeling Aims and Principles

During the experiments described in the second part of this
study (preceding paper in this issue), it was found that the
molecular weights of the product could be controlled by the
duration and temperature of the treatment. Because the molecular
weight distribution is of primary importance from the respect
of flocculation efficiency, and is influenced by the mechanism
of degradation, the aim of the first part of our study was to
elucidate the relationship between the mechanism and the
resulting molecular weight distributions. Knowing this relation-
ship, the objective of the second part of the work was to identify
the mechanism and kinetics of degradation from data obtained
experimentally.

Preliminary Considerations. Due to the complex behavior
and composition of starch in the studied process, some basic
considerations and simplification had to be made as follows:

(1) Split of a molecule among the multitude of molecules is
a stochastic event; i.e., it can happen accidentally. The prob-
ability of its occurrence in a given time interval depends on the
chemical structure, energy state, and interactions of molecules
with their environment. Some influencing factors are presence
and concentration of reagents and catalysts, temperature, pres-
sure, pH, etc. The proposed stochastic model did not require
the preliminary or exact knowledge of these effects.

(2) Considering that starch molecules are long carbohydrate
chains, the location of bond scission can be accidental, too. This
means that cutting off sections of various lengths from the chain
can happen with different probabilities. In other words, split
probabilities are not necessarily identical at every location in
the chain; i.e., they may have a distribution along the length of
a molecule.

(3) Due to the multitude of molecules in the reaction mixture,
the distribution of molecular weights can be considered as
continuous. However, dividing the studied molecular weight
range into discrete intervals, the distribution can be given in
the form of a histogram. In the proposed stochastic model, these
MW intervals are not necessarily uniform; linear and nonlinear
divisions are equally applicable.

(4) Due to splitting, the fragments of a molecule are
transferred from its original MW interval to lower ones.
Therefore, due to the transitions, the number of molecules in
various MW intervals, i.e., molecular weight distribution of the
reaction mixture, is changing during the process.

(5) The transitions from a given MW interval to other ones
depend on the actual conditions only; i.e., the earlier molecular
weight distributions have no influence on the actual transitions.
Therefore the process can be considered as a homogeneous
Markov chain.

(6) The differences in the chemical structures and molecular
weights of molecules within a given MW interval are neglected.
Therefore, the deviations of split probabilities within an interval
are also ignored.

(7) The law of mass conversation should be respected. For
this, the split probabilities (determining the number transition
probabilities to other intervals) have to be converted to mass
fraction transition probabilities. The mass balances of the whole
system and for each MW interval separately should be consid-
ered.

(8) The continuous time scale of treatment was discretized
using uniform time steps. To investigate the behavior of the
proposed model in this first part of the paper, it was supposed
that a molecule splits only once and to two parts during a time
step. In the second part of the study, to determine the transitions
between the MW intervals from experimental data, this sup-
position was not required.

(9) For the sake of simplicity it was supposed that no coupling
of molecules (polymerization or cross-linking) takes place in
this process. If however coupling would also occur, this can be
taken into account by using net values for transition probabilities.

The explanation of modeling principles is shown in Figure
1. Let us consider a molecular weight range extending between
the maximal MW in the original starch and the lowest value in
the degradation product. Let us divide this scale into smaller
intervals arbitrarily, considering the desired scrutiny and the
applied analytical method. These intervals are distinguished by
their characteristic (e.g., mean) molecular weightMi, where
index i decreases with decreasing molecular weights fromMN

to M1. Because the process is considered as homogeneous
Markov chain and modeling can be started at any stage of
degradation,MN means the highest MW interval at the beginning
of calculation.

The split probability of molecules in intervalMi during time
step∆t is denoted bynPi. Because the reaction mixture contains
a great number of molecules, due to the law of large numbers,
this probability gives the expected proportion of molecules that
will split in interval Mi during time step∆t. Indexn on the left
side ofnPi indicates that it refers to the number of molecules.

Let us suppose a molecule in intervalMN marked by #1 in
Figure 1 that splits in two fragments transferred toMN-1 and
M1, respectively. Particles #2 and #3 are similar examples for
other splitting molecules. The mass balance for molecule #1 is
mN ) mN-1 + m1. In general, for any splitting molecule

wheremk, ml andmm are the masses of the parent molecule and
the resultant fragments belonging to intervalsMk, Ml andMm,
respectively. Because the parent molecule decomposes to two
parts, birth probabilities of fragmentsnPl,k andnPm,k should be
identical and equal to split probabilitynPk as

However, the masses of fragments transferred to intervalsMl

andMm are generally not identical becausem1 andmn can differ

Figure 1. Principle of the proposed model.

mk ) ml + mm (1)

nPk ) nPl,k ) nPm,k (2)
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from each other. It means that mass transition probabilities differ
from the number transition probabilities as will be shown later.

If in an ith MW interval during time step∆t, splitting of
several molecules takes place simultaneously andnPj,i denotes
the transition probability of a molecule fragment from interval
i to intervalj, the degradation probability of molecules in interval
i is

The so-called self-loop probabilitynPi,i tells us the chance that
a molecule in intervali will not split; i.e., it remains in interval
Mi. As nPi,i andnPi are complementary quantities

Calculation with transferred mass fractions instead of the
number of fragments is more reasonable in practice. Using mean
molecular weightsMj or Mk instead ofmj andmk as approxima-
tion, the conversion between number and mass transition
probabilities is

wherePj,i is the mass fraction transition probability from anith
to thejth interval, whilenPj,i, andnPk,i are the number transition
probabilities from theith interval to thejth and to anykth
intervals, respectively, includingk ) j. ApproximationMi =
mi can be applied only if the MW intervals are uniform and
narrow enough. In the second part of this study, where no
conversion was done, this constraint was not required.

The change of the mass fraction of anith MW interval during
time step∆t can be calculated from mass balance

which is the difference between the mass fractions entering and
leaving theith MW interval, andxi andxk are the mass fractions
of the ith and anykth (k * i) intervals averaged for the actual
∆t time step. Mass fractionxi is the mass of material in interval
Mi per the total mass of the reaction mixture.

Model Development.Considering the complexity and sto-
chastic behavior of the studied system, there is no reason to
define too high a number of MW intervals. In this part of our
study, the whole MW range was divided into 10 discrete
intervals (M10 > M9 > M8 > ... Mi ... > M2 > M1). The structure
of the model is shown in Figure 2, where the boxes and arrows
represent the molecular weight intervals and the transitions
between them, respectively. During degradation, transitions take
place from higher to lower MW intervals only. For the sake of
clarity, only a few transitions are indicated on the diagram as
examples.

The first objective of modeling was to estimate the evolution
of molecular weight distribution in the reaction mixture versus
time testing different transition probability profiles along the
length of molecules. The influence of the molecular weights of
the splitting molecules was also investigated. The estimated
molecular weight distribution, i.e., the expected mass fractions
in different MW intervals (pi(tn)) after thenth time step was
described by state probability vectorp(tn) as

where∑pi(tn) ) 1 at any time.
As was mentioned, calculation can be started at any stage of

the process with any kind of initial distribution. To study the
behavior of the proposed model, the initial state att ) t0 was
chosen as

Similar to a commonly used method,15-17 transition prob-
abilitiesPj,i were arranged in matrixP, where diagonal elements
Pi,i are the so-called self-loop probabilities.P1,1 ) 1 means that
from the last intervalM1 no further degradation takes place.

Figure 2. Graph representation of the model structure.

nPi ) ∑
j,j*i

nPj,i (3)

nPi,i ) 1 - ∑
j,j*i

nPj,i (4)

Pj,i )
Mj‚nPj,i

∑
k

Mk‚nPk,i

(5)

∆xi

∆t
) ∑

k,k*i

Pi,k‚xk - xi‚∑
j,j*i

Pj,i (6)

Table 1. Types of Split Probability Profiles Used for Simulations

split probability distribution
along the length of molecules

dependence on the size
of molecules

case A
uniform

probability
anywhere

case B
increases

toward the
middle

case C
increases

toward the
ends

case a
no dependence

case Aa case Ba case Ca

case b
linear decrease with
decreasing size

case Ab case Bb case Cb

case c
exponential decrease
with decreasing size

case Ac case Bc case Cc

p(tn) ) [p10(tn) p9(tn) ... pn(tn) ... p2(tn) p1(tn) ] (7)

p(t0) ) [p10(t0) p9(t0) ... pn(t0) ... p2(t0) p1(t0) ] )
[1 0 0 0 0 0 0 0 0 0] (8)

P ) | P10,10 0 ‚‚‚ 0 ‚‚‚ 0 0
P9,10 P9,9 ‚‚‚ 0 ‚‚‚ 0 0
l l ‚‚‚ 0 ‚‚‚ 0 0
Pi,10 Pi,9 ‚‚‚ Pi,j ‚‚‚ 0 0
l l ‚‚‚ ‚‚‚ ‚‚‚ 0 0
P2,10 P2,10 ‚‚‚ P2,j ‚‚‚ P2,2 0
P1,10 P2,9 ‚‚‚ P1,j ‚‚‚ P1,2 1

| (9)
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There are two possibilities to calculate the time evolution of
the expectable molecular weight distributions. At first, according
to the practice applied in earlier studies,15-17 the state probability
after annth time step can be calculated by matrix operation as

In this work, another method was used, where transitions
probabilitiesPj,i refer to the expectable mass fraction transitions
per unit time. In this case, the transferred mass fraction from
an ith to a jth interval during thenth time step is estimated as

The change of mass fraction in intervalMi can be determined
from the mass balance. Writing eq 6 in differential form, and
usingpi state probability instead of mass fractionxi, the change
of pi(t) is

Considering intervalsM10-M1, the expected molecular weight
distribution was determined by solving a differential equation

system composed of 10 equations, with initial conditions shown
in eq 8.

Model Parameters.The first objective of simulation was to
elucidate the influence of different split probability profiles on
the expected evolution of molecular weight distribution during
the process. For this, three different types of split probability
distributions were considered along the length of molecules:
case A-uniform probabilities along the whole length; case
B-increasing probability toward the middle of the molecule
chains; case C-increasing probability toward the ends (end
scission is preferred).

To study the effect of the size of molecules, three different
possibilities were considered:case a-equal degradation prob-
ability for any size; case b-linear decrease ofnPi with
decreasing size;case c-exponential decrease with decreasing
size.

The combinations of these suppositions are shown in Table
1. Simulations were carried out with all the nine possibilities,
but among them only the most informative results will be
discussed here. Figures 3-5 show the model parameters used
for cases Ab, Bc, and Cc, respectively. The first horizontal axis
in the forefront of these diagrams refers to the position of

Figure 3. Split probability distribution used for case Ab.

Figure 4. Split probability distribution used for case Bc.

p(tn) ) p(t0) × Pn (10)

∆xj,i

∆t
) pi(tn)‚Pj,i (11)

dpi

dt
) ∑

k,k*i

(Pi,k‚pk(t)) - pi(t)‚ ∑
j,j*i

Pj,i (12)

Figure 5. Split probability distribution used for case Cc.

Figure 6. Mass fraction transition probabilities in case Ac.
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splitting using the same scale as was applied to define the 10
MW intervals. Namely: positionj means that splitting takes
place after thejth segment of the molecule; therefore the
resultant fragments are transferred to the intervalsMj andMi-j,
respectively. The other horizontal axis on the right side shows
the initial MW intervals of the splitting molecules (Mi).

Data columns parallel to the front axis give the splitting
probabilities at different positionsj (1 e j < i) along the length
of molecules in given initial MW intervals (2e i e 10). Note
that the maximal value of splitting positionsj decreases with
decreasing molecule sizei, becausej should be less thani. Data
columns on the left side (indicated as “total”) show the change
of the degradation probabilitiesnPi as a function of the initial
size of molecules.

Figure 3 gives the splitting probabilities for case Ab, where
nPj,i did not change along the length of molecules, but the
degradation probabilitynPi decreased linearly with decreasing
molecular weight. The maximal value of this latter wasnP10 )
1.8 × 10-2 s-1 and diminished tonP2 ) 0.2 × 10-2 s-1. For
the sake of comparison, the mean degradation probability
averaged in interval 2e i e 10 was constant (nPh i ) 1.0) in all
cases shown in Table 1.

Figure 4 shows the model parameters in case Bc, when the
probability of degradation decreased exponentially with decreas-
ing i from a value ofnP10 ) 3 × 10-2, and splitting occurs
preferentially around the middle of molecules, with decreasing

probability toward the both ends, similar to a normal distribution
function. Figure 5 shows the parameters used for case Cc, where
the degradation probability also decreased exponentially, but
splitting is most probable toward the ends of molecules. Note
that these data refer to the number of splits, which differ from
the mass fraction transition probabilities of matrixP. Therefore,
these data were converted by eq 5 to mass fraction transitions
Pi,j resulted in asymmetric distribution along intervalsMj as is
seen in Figure 6 for case Ac as an example.

Simulations with different transition probability profiles were
carried out for all cases shown in Table 1, using the ModelMaker
3.0.2 software (Cherwell Scientific Publishing Ltd.).

Results and Discussion

The most interesting results are shown in Figures 7-11 as
examples. Surface and contour plots in Figure 7a,b show the
time evolution of molecular weight distribution obtained for case
Aa. It is seen that just after the start of degradation a sudden
concentration drop takes place between the intervalsj ) 10 and
j ) 9. Later on, after a nearly constant level (see the arrow on
Figure 7b), the mass fractions in the successiveMj intervals
are increasing gradually fromj ) 5 to j ) 2. After 40-60 s,
the mass fractions in the medium MW intervals (fromj ) 7 to
j ) 3) became almost zero, illustrated by the flat surface. Toward
the smallest MW intervals (fromj ) 2 to j ) 1) a steep rise is

Figure 7. Evolution of MWD in case Aa. Figure 8. Evolution of MWD in case Ab.
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seen at any time after 20 s. This behavior seen in this diagram
is the consequence of the constant degradation probabilities for
eachMi (not seen among the diagrams), which corresponds to
increasing split probabilities per splitting positions when the
size of the molecules diminishes. This unrealistic assumption
resulted in very low accumulation in the intermediate MW
regions even in the first period of process.

Figures 8 and 9 show quite different distributions: supposing
linear decrease of degradation probabilities with decreasing
molecular size (cases Ab and Bb) means increasing barrier
against transition from higher MW intervals toward the lower
ones. Therefore, the increasing accumulation of material in MW
ranges fromj ) 8 to j ) 1 appears as a continually rising ridge
in a considerable time period (see the arrows on Figure 8b).
Although Figures 8 and 9 are quite similar to each other, some
differences can be recognized: when the split probabilities are
increasing toward the center of molecules (case Bb, Figure 9);
the rise of concentration alongj is somewhat steeper compared
to Figure 8 (case Absi.e., uniform probability along the length).
This behavior is understandable considering that in case Bb more
molecule fragments are produced with medium lengths between
j ) 7 andj ) 3 in the first period of the process.

As regards the consequence of increasing split probability
toward the ends of molecules, Figures 10 and 11 (cases Ca and
Cc) reveal interesting behavior. At the beginning, considerable

mass transition takes place from the highest interval (i ) 10)
to the next few (j ) 9-7) and to the lowest MW ranges (j )
1-2). Therefore, the mass fractions are increasing rapidly in
these lateral intervals and somewhat slower in the medium MW
intervals, resulting in a concave region on the slowly rising ridge.
For decreasing degradation probabilities with decreasing size
(case Cc, Figure 11), the most pronounced accumulation of
degradation products in the intermediate MW intervals caused
a steeper rise during a longer period of the process. The
mentioned concave region can be recognized even here,
especially betweenj ) 6 andj ) 4 (at t ) 20-40 s).

These diagrams have confirmed that the distribution of split
probabilities along the length of molecules and the dependence
on the size of the splitting molecules have characteristic
influence on the evolution of molecular weight distribution of
the products. This behavior can help us to identify the
mechanism of degradation by evaluating the experimental data,
as will be shown in the second part of this study.

As was mentioned, the model allows any kind of division
along the studied molecular weight range to define MW
intervals. The results discussed above were obtained with 10
uniform MW intervals. In the second part of this study, five
MW intervals were used with exponentially decreasing spans
to determine the transition and degradation probabilities from
experimental data.

Figure 9. Evolution of MWD in case Bb. Figure 10. Evolution of MWD in case Ca.
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Summary and Conclusions

A Markov-chain stochastic model was developed to inves-
tigate the effect of different split probability distributions along
the length of molecules on the evolution of molecular weight
distribution of the products. The number degradation probability
of molecules was defined as the sum of split probabilities at
different positions of a molecule. Its dependence on the
molecular weight of the splitting molecules was also considered.
An equation was proposed for the conversion of split prob-
abilities to mass fraction transitions between different molecular
weight fractions. To characterize the molecular weight distribu-
tion during the process, 10 discrete molecular weight intervals
were defined with uniform widths along the whole MW range
of the studied reaction system, supposing transitions between
them, due to the fragmentation of molecules.

After principal considerations, a Markov-chain model con-
sisted of a mass fraction transition probability matrix and a state
probability vector was proposed. The time evolution of the
expectable molecular weight distributions were determined by
solving a set of differential equations.

The behavior of the model was investigated by supposing
different split probability profiles along the length of molecules
(uniform, increasing toward the middle, increasing toward the
ends), also depending on the size of the splitting molecules.
Simulations were carried out with nine different parameter sets

resulting in characteristic molecular weight distribution profiles,
which seemed to be suitable to identify the mechanism and
kinetics of degradation.

Nomenclature

Mi ) ith molecular weight interval, characterized by its average
molecular weight, Da

mk ) mass of a splitting molecule, kg
ml, mm ) mass of the fragments obtained by splitting of a

molecule, kg
xi ) mass fraction of the material in theith interval, relative to

the total mass of material, kg/kg
∆xi ) change of mass fraction in theith molecular weight

interval during∆t time step, kg/kg
nPi ) number degradation probability of a molecule in theith

interval during∆t time step, s-1

nPj,i ) split probability resulting in fragments transferred from
the ith to thejth interval, s-1

Pj,i ) probability of mass fraction transition from theith to the
jth interval, dimensionless (eqs 9-10), or s-1 (eqs 11-12)

p(tn) ) state probability vector after thenth time step, eq 7
pi(tn) ) state probability or expected mass fraction in MW

interval i after thenth time step, kg/kg
pi(t), pi(t) ) state probability or expected mass fraction in MW

intervalsi or k at time t, kg/kg
P ) mass transition probability matrix, eq 9
t, tn ) time, and time after thenth time step, s
∆t ) time step, s
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